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A numerical method, based on the integral equation of the adsorption on energy heterogeneous 
surfaces, is suggested for the evaluation of overall isotherms. It is shown that for the distribu­
tion of adsorption energies given by Eq. (l.11) and different models of the adsorption behaviour, 
the overall isotherms obey approximately the Dubinin-Radushkevich equation. The strong 
energy heterogeneity smears effectively the diff~rences between the localized and mobile ad­
sorption and leads to the same character of the overall isotherm with only a slightly changed 
heterogeneity parameter. 

Among the empirical correlations used to express the experimental data for the 
isothermic adsorption on a heterogeneous surface, the Dubinin-Radushkevich (DR) 
isotherm 

e(p, T) = a/am = exp {- [~! In (PmiPlJ}; P < Pm (1.1) 

is very important. The observable quantity is here the adsorbed amount a at a partial 
pressure p of the adsorbing species, and at a temperature T. Moreover, Eq, (1.1) 
contains three adjustable parameters E, Pm' and am which can be estimated easily 
from a quadratic regression of In a vs In p. In the original derivation!, based on the 
Polanyi theory of the adsorption potential e, the expression (1.1) has been suggested 
to correlate adsorption' data for porous materials, provided that the integral distribu­
tion function for the volume W of micropores is given by 

(1.2) 

In this theory, the pressure parameter Pm has been identified with the equilibrium 
vapour pressure Ps of the adsorbing species, requiring thus a subcritical temperature 
during the adsorption. To the quantity am = Wa meaning was given of the volume 
of all the micropores in the adsorbent (accessible for the gaseous species). 
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1710 Smutek, Zukal: 

It has been shown, that the correlation (1.1) is also applicable to some nonporous 
surfaces and the supercritical temperatures. In such cases the parameter Pm loses 
its original physical meaning (for a review, see2

). As a consequence of this extension 
of the applicability, several authors tried to obtain a distribution f( q) of adsorp­
tion energies q on an energy heterogeneous (but nonporous) surface, consistent with 
the overall adsorption isotherm given by Eq. (1.1). Generally, the starting point has 
been the integral equation 

e(p, T) = a(p, T)/am(T) = f oo 8(p, T, q) f(q) dq . 
qo 

(1.3) 

Here, qo is the lowest adsorption energy, f( q) is normalized to unity,- and hence 
the kerneI8(p, T, q) ~ 1 expresses the coverage of adsorption sites or regions with the 
adsorption energy q, at the pressure p and the temperature T. In the simplest case 
the kernel is given by the Langmuir isotherm 

8(p, T, q) = p 
p + a(T) exp[ -(q - qo)/RT] 

(1.4) 

This means a restriction of the problem to submonolayer coverages only, with 
localized adsorption without any interaction between admolecules. Yet it is so far the 
only case claimed to be solved exactly for f( q). The authors3 used the Wiener-Hopf 
method for the solution of integral equations and arrived at the expression 

exp (A2) 
f(x) = exp (_x 2

) sin (2Ax) 
A 

(1.5) 

with 

A = nRT. 
E ' 

q - qo + BRT d 
x = 'an 

E 
(1.6) 

The parameters E and Pm have the same meaning asin Eq. (1.1). The lower integra:. 
tion limit in Eq. (1.3) becomes Xo = BRT/E, the upper one is infinity and'dq = E dx. 
Unfortunately, the claim of the correctness of solution (1.5) is unsubstantiated. 
First, f( q), and also f( x), should be normalized to unity according to the iI1itial 
definitions. But (see4

) 

exp (_x2) sin (2Ax) dx = - exp (X2) dx = exp (A2) f oo 1 fA 
a 0 A 0 

00 ( _ 2A 2)k - 1 
= exp(A2) L > 1 (1.7) 

k = 1 (2k - I)!! 
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Dubinin-Radushkevich Equation 1711 

for A > O. The substitution of zero by Xo = BRTjE = ABjn in the lower integra­
tion limit of (1.7) leads generally to values of the integral different from unity. 

An even more serious objection may be raised against the distribution function 
(1.5). The distribution function in this form is unacceptable since its term sin (2Ax) 
leads to nonphysical negative values of the distribution function f( x). Thus, Eq. (1.5) 
can provide at best an approximate solution to the integral equation (1.3), with the 
kernel (1.4) and the left-hand side given by Eq. (1.1). Assuming next that B is non­
negative, i.e., that Pm ~ a(T), the physically meaningful part of f(x) runs from 
Xo = AB/n = BRTj E to X max = n/2A = E/2RT. Thus, good approximation to the 
observed isotherm (1.1) can only be obtained for large values of EjRT (low values 
of A), except for the estimate of am which is uncertain because of the above mentioned 
lack of normalization of f( x). 

In an earlier papers, the integral equation (1.3) with the Langmuir kernel (1.4) 
has been solved for the left-hand side given by 

e(p, T) = exp {- [R; In (1 + Pmfp)J}; P < Pm' (1.8) 

This expression differs only slightly from the DR-equation (1.1) for P ~ Pm' The 
modification (1.8) has been necessary owing to the use of the Stieltjes' method6 

for the solution of the integral equation. The result is formally identical with the 
. solution (1.5), only x = (q - qo)/ E, i.e., B = 0 in this case. Unfortunately, the last 

step of calculations involved an error. The correct expression for x is 

RT 
x = - In {exp [(q - qo)jRT] - 1} . 

E 
(1.9) 

Consequently, we obtain Xo = - 00 at the lower integration limit, qo, of Eq. (1.3), 
so that sin (2Ax) in (1.5) oscillates strongly between positive and negative values 
near, q = q ° and the distribution function f( x) lacks any physical meaning. 

In this way it is seen that attempts to assign experimental isotherms obeying the 
DR-equation ' (1.1) to some continuous distribution function f( q) in adsorption 
energies have met with limited success so far, even when using the simplest kernel 
(1.4) of the Langmuir form. 

An approximate solution of Eq. (1.3) is gjven by the so called condensation me­
thod7

• Here the local isotherm is represented by a step function (0; 1), where the 
jump from unoccupied to fully occupied sites occurs for a value q(p) which is a mono­
tonously decreasing function of the pressure. Then the approximate energy distribu­
tion function leading to Eq. (1.1) becomes 

f(q) = 2(q;; qo) exp {- [(q - qo)/EYl . (1.10} 
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1712 Smutek, Zukal : 

Formally, it is the same differential distribution function as that obtained from the 
integral distribution function (1.2). Indeed, the Dubinin procedure, which assumes 
subsequent filling of pores according to their size (with the corresponding adsorption 
potential 8), matches closely the condensation method for continuously heterogene­
ous surfaces. It is seen that the parameter E2 in Eq. (1.10) has the meaning of the 
variance S2 of the distribution, i.e., it characterizes its energy width and its mean 
adsorption energy q - qo = .J(n)/2E. 

In this paper, we have triedto tackle the problem from another side: by numerical 
solution of the integral (1.3) for the normalized distribution function 

(1.11) 

for different kernels 8(p, T, q), i.e., for different assumptions for the local adsorption 
probabilities. The values of -In e obtained in this way are further correlated with 
a power function in In p. At last, we study in which range of coverages a truncation 
at the quadratIC term in In p will reproduce the input of -In e data with sufficient 
accuracy. With this truncation, the correlation is of the form (1.1) of the DR-iso­
therm. 

METHOD 

Numerical solution of the problem with the Langmuir isotherm for the kernel 
in Eq. (1.3) has been already publishedB

• However, the results were presented only 
graphically and also the goal of that paper was different from the ours. We assumed 
the following simple isotherms for ~he kernel in Eq. (1.3): 

1) The Fowler isotherm 

8 . ( pKH = -- exp -K i8). 
1 - 8 

2) The Hill-deBoer isotherm 

pKH = _8_ exp (_8_ -Ki8) . 
1-8 1-8 

Here 

8 = 8(p, T, q) , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Dubinin-Radushkevich Equation 1713 

and 

(2.5) 

represents a rough approximation of lateral interactions between admolecules. 

3) Further, a few calculations have been performed for the "scaled particles" 
variant of the perfectly mobile adsorption9 

K = _8_ ex [8(3 - 28) - K.8] 
P H 1 _ 8 P 8( 1 _ 8)2 l' 

(2.6) 

The above isotherms can be easily extended to a multilayer adsorption of the BET 
type, i.e., starting with the second layer, the heat of adsorption is equal to the heat 
of condensation. It is sufficient to write 

8 1 = 8(1 - h); h = piPs (2.7) 

instead of 8 in the right-hand sides of Eqs (2.1), (2.2) and (2.6), and the left-hand 
sides become 

(2.8) 

Here, Ps is the saturation pressure of adsorbing vapours and it is meaningful only 
for subcritical temperatures. 

In order to simplify the calculations, the following substitutions have been intro­
duced: 

c = sIRT, 

and 

u = qolRT + In (pK~) . 

These substitutions tra'nsform Eq. (1.3) into 

and the kernels (2.1), (2.2) and (2.6), respectively, are defined by 

8 
c .j( t) + u = In -- - Ki8 , 

1 - 8 
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and 

8 8 
c .J(t) + u = In -- + -- - Ki8 , 

1-8 1-8 

c .J(t) + u = In -- + 3 -- + -- -: Ki8 . 8 8 (8)2 
1-8 1-8 1-8 

Smutek, Zukal : 

(2.14) 

(2.15) 

These forms are suitable for iterative search for the values of 8( t, u, c, K i ) corres­
ponding to the given sets of (t, u, c, KJ The form of the integral (2.12) suggests 
its numerical integration by means of the Gauss-Laguerre method 1,.0. But eve.n for the 
highest available number of terms, n = 32, the results of numerical integration 
agree only poorly with the exact values. This is caused by a steep increase of 8(t) 
in a narrow range of t-values. Therefore, a set of Gauss-Legendre integrations has 
to precede the Gauss-Laguerre integration. For a given number of terms in the inte­
gration formula, the number of ranges and their widths have been changed in order 
to obtain the accuracy of e better than 10- 5 for the Fowler isotherm, and better 
than 10-4 for the Hill-deBoer isotherm. The accuracy has been checked either 
directly by increasing the network of ti in the critical region of the steepest changes 
in 8(t), or indirectly by following improvement of the fit of the correlation of -In e 
in powers of u with the increase in the highest power of u applied. 

The values of e( u, c, K i ) were evaluated for the following parameters: 

1) Fowler isotherm: Ki = 0; 0'5; 1'0; 1'5; c = 3; (1); 10; 2) Hill-deBoer isotherm: 
K· = O· (1)' 5· 1·5' 2·5' c = 6 (1)' 11' 3) Scaled particles' c = 8' K· = O· 2' 4' 6 and 

1 . ' " " " ., 1 "" 

c = 7; Ki = 2. Separation of the adsorbate into two adsorbed phases in these models 
begins for Ki > 4; 6'25, and 11'6823, respectively. Therefore, the parameters Ki used 
above correspond to moderate latetal interactions when only one adsorbed phase 
is defined. 

Values of e > 0·9 were obtained in the case of Fowler isotherms, the range de­
creasing below 0·8 for the Hill-deBoer isotherrris for low Ki and c-values; still lower 
coverages were reached for the "scaled particles" model. The step in u (corresponding 
to the same step in In p) for the individual isotherms was usually Llu = 1, tmly for the 
most compact isotherms (low c, high K i ) it was decreased to Llu = 1/2. 

The correlations of -In e in powers of u have been examined up to u 6
• Of primary 

interest, however, were the quadratic correlations 

(2.16) 

where 

(2.17) 
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Dubinin-Radushkevich Equation 1715 

According to the definition (2.11) one obtains 

(2.18) 

Comparison with the DR equation (1.1) shows the formal equivalence of the two 
expressions. As far as the correlation (2.16) is satisfactory, the adsorption data fit 
formally the correlation (1.1), but with e' = e bo, i.e., the parameter am in the 
DR-isotherm (giving e = 1 for P = Pm) goes over to a:n = amlbo, giving e = 
= 11bo for P = Pm' 

The fit has been considered satisfactory if the overall standard deviation in In e 
did not exceed 2. 10- 3

, which is a value lower than the experimental error in most 
cases. 

RESULTS AND DISCUSSIO~ 

The most important result achieved is the satisfactory fit of adsorption data by means 
of the quadratic equation (2.16) over a wide range of pressure for most of the cases 
treated. This implies directly that the surface heterogeneity of the type (1.10) smeqrs 
out (at least for higher values of the heterogeneity parameter c) any effect of lateral 
interactions (provided they are not too strong) and even of the mobility character 
of admolecules. Clearly, this implication can be extended to other types of strong 
surface heterogeneity. 

In all the cases studied, the pressure range for a satisfactory fit of -In e vs powers 
of U, as well as its standard deviation, remain almost unaffected by lateral interactions, 
provided the latter are moderate. An increase in the surface heterogeneity, i.e., 
the increase in c, improves the quadratic fit (as well as any higher polynomial fit). 

In the quadratic correlation (2.16), the parameter b2 reflects the adsorption hetero­
geneity of the surface, whereas the parameter In bo represents a correction of the 
true 'value of am, and Um can be interpreted as a measure of the adsorption energy, 
according to the definition (2.11) of u. Comparison of expressions (1.10) and (1.11) 
with the definition (2.10) suggests the equality b2 = 1/c2 should hold, provided the 
condensation approximation is valid. This is, however, not the case, as will be shown 
below. 

The quadratic fit (2.16) becomes poor for too high and too low coverages e. With 
high coverages, i.e., for high pressure, a rather sudden deterioration is met. This 
occurs in the region of little interest, where, most probably a multilayer adsorption 
is developed to a considerable extent. For coverages e < 0'07, the misfit increases 
more gradually and l~aves e well within experimental error. Thus the quadratic 
fit appears to express very satisfactorily the experimental data over the whole signi­
ficant range of adsorption. 
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1716 Smutek, Zukal : 

In the following, details for the individual types of adsorption isotherms 8(p, T, q) 
are discussed. 

The Fowler Isotherm 

The kernel (2.1) corresponding to the Fowler isotherm gives the best fit of the inte­
gral (1.3) with the overall isotherm (1.1) for the heterogeneity parameter e ~ 6. 
A satisfactory correlation of b2 ( e, KJ is then 

(3.1) 

instead of expected form b2 = 1/e2
• 

Using this correlation, the parameters In bo and Urn of the fit (2.16) have been 
reevaluated. The fit thus obtained was not appreciably inferior to the original regres­
sions in which all three parameters were optimized. The range of U values has been 
limited by the condition that the standard deviation of the fit must not increase 
significantly by the incorporation of a new U value and that it must be lower than 
2.10- 3 in any case. The attempts to construct simple correlation for urn(e, KJ 
and In bo( e, K i ) have failed. The coefficients are given in the Table I, together with 
the corresponding ranges of U values, the standard deviations of the fit, and the values 
of e', defined by the relationship 

(3.2) 

The value of e' characterizes the apparent heterogeneity, if the adsorption with 
lateral interactions, defined by K i , is dealt with as if no interactions occurred. 

The data of Table I show that moderate lateral interactions, when neglected, 
distort only insignificantly the type (1.11) of the heterogeneity distribution. Moreover, 
this neglect of interactions causes only small decrease in the apparent heterogeneity, 
the latter becoming more marked as the heterogeneity parameter e is decreased. The 
increase in Ki is accompanied by a decrease in Urn = qolRT + In (PrnK~). This can be 
interpreted as an apparently stronger overall adsorption, since for a given value 
of e it holds • 

Urn(Ki) - U = urn(O) - [urn(O) - Urn(Ki) + u] = 

=, urn(O) - U' , (3.3) 

where 

Since the difference [urn(O) - Uffi(Ki)] is positive, it gives rise to an apparent increase 
iri the sum (qolRT + In K~), which means a stronger adsorption. 
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Dubinin-Radushkevich Equation 1717 

Further, it can be shown that the parameter Pm in Eq. (2.18) has not a meaning 
of the saturation pressure Ps' Indeed, to the first approximation one obtains 

(3.5) 

where qL is the heat of condensation. This would give 

Urn =Us = qolRT+ InK~ + A - qdRT= A' + (qo - qd cis = A' + B'c. (3.6) 

Thus, Urn should increase roughly linearly with c, as for as the lowest heat of ad­
sorption qo is higher than the heat of condensation qL of the adsorbing vapour. An in­
spection of the Urn data in the Table I reveals, however, that for a given K j value 

TABLE I 

Quadratic correlation (2,16) for Eq. (J. 3) with the kernel (2'1) and b2 given ~y Eq. (3'1) 

c K j 
Range 104s 102b2 In bo urn C 

I 

of-u 

6 0'0 1-12 14·200 2·28318 0'05425 0·21224 6·0000 
6 0·5 1-12 14'638. 2·34336 0·04644 -0,06389 5'9006 
6 1·0 2-12 11·841 2·40355 0·04117 -0,34773 5·8042 
6 1·5 2-'-11 6·280 2·46274 0·03514 -0'62958 5·7106 

7 0·0 2-13 5·080 1'77384 0'04822 0·12215 7·0000 
7 0'5 2-13 5'313 1'80633 0·04064 -0'13573 6·9255 
7 1'0 2-13 5·036 1·83882 0·03427 -0,40001 6'8527 
7 1'5 2-12 4'089 1·87130 0·02880 -0,66899 6'7816 

8 0'0 3-14 2'394 1·40601 0·04099 0·07499 8·0000 
8 0'5 3-14. 2'943 1·42505 0·03419 -0'17429 7·9396 
8 1·0 3-14 2'895 1·44409 0·02859 -0,43720 7·8803 
8 1'5 3- 14 2·148 1·46314 0·02416 -0,69130 7·8222 

9 0'0 3-15 1'302 1'13687 0'03446 0'04874 9·0000 
9 0·5 3-17 1·889 1'14876 ' 0'02875 -0'19775 8'9489 
9 1'0 3-17 2·542 1·16065 0'02421 -0,45161 8·8986 
9 1·5 3-16 1'716 1'17253 0·02010 -0'70823 8·8489 

10 0·0 3-16 1·122 0·93590 0·02906 0·03212 10·0000 
10 0·5 3-17 1·218 0·94370 0'02416 -0,21169 9·9555 
10 1·0 3-18 1'532 0'95150 0·02007 -0,46224 9'9116 
10 1·5 3-18 1·114 0·95930 0'01672 -0,71777 9·8682 
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Urn decreases as e is increased and this variation is strongly nonlinear. Thus, for Ki = 0 
(Langmuir isotherm), the simplest fair approximation, 

Urn(e, 0) ~ 0.01004 _ 0·48657 + 5·39421 
e - 1·9 (e - 1'9)2 

(3.7) 

involves four parameters for five degrees of freedom. 

Finally, if am is identified with the full monolayer coverage, the quadratic correla­
tion (2.16) gives its estimate a few per cent too low. The error rises up to 5·5 per 
cent at e = 6 and Ki = 0 and decreases with the increase in Qoth e an<;l K i, For 
lower heterogeneity (or for higher temperatures) with e < 6, a quadratic fit of 
-In e vs U (or In p) with a sufficiently small standard deviation can be achieved 
over a restricted range of e values only, although inclusion of higher terms in u i 

(or In ip) extends this range markedly. The coefficients of these higher-order poly­
nomials behave reasonably and change regularly with the increase in Ki and with the 
order of the polynomials used. It is only the case of e = 3 and Ki = 1· 5 in which the 
presence of lateral interactions may be inferred from experimental data, This is 
evidenced by the impossibility to express the e data as a series of the Langmuir 
isotherms ' 

with only positive coefficients a i and bi , 

The Hill-deBoer Isotherm 

For the kernel (2.2), the quadratic fit has been satisfactory over the significant range 
of U (or In p) values for the heterogeneity parameters e ~ 6, as for the Fowler 
isotherm, The dependence of the parameter bi in Eq. (2.16) on e, however, deviates 
from the expected one somewhat more than in the Fowler case, and satisfies the cor­
relation 

(3.8) 

With b2 fixed by Eq. (3.8), the best parameters In bo and Urn in the correlation (2.16) 
have been reevaluated. These are summarized in Table II. Therein, again, the ap­
parent heterogeneity parameters e', defined by Eq. (3.2), are listed, together with the 
paramet~rs e" for the substitution of the kernel (2.2) by the Langmuir isotherm, 
i.e;, from the equality 

(0'955 + 0'004KJje2 - (6'65 - 0'84Ki)je
4 = 1j(e")2 - 6·41j(e")4. (3.9) 
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TABLE II 

Quadratic correlation (2'16) for Eq. (1'3) with the kernel (2'2) and b2 given by Eq. (3'8) 

e K j 
Range 104s 102b2 In b2 urn e' elf 
of-u 

6 0 2-14 15·494 2,13966 0·30248 0'57679 6'0000 6·2605 
6 1 2-14 13,417 2·21559 0·27504 0·22144 5,8627 6'1155 
6 2 2-14 13'997 2·29151 0·24871 -0,14358 5·7305 5·9861 
6 3 2-14 15,585 2,36744 0·22480 -0,52318 5'6027 5·8617 
6 4 3-13 6·399 2·44336 0·20580 -0,92520 5·4790 5,7420 

6 5 3-13 6'186 2,51929 0,18972 -1,34618 5·3587 5·6264 

7 0 3-15 8·729 1·67301 0·27387 0·57712 7·0000 7·2461 
7 1 3-15 7·867 1,71516 0·24742 0·23940 6·8936 7'1394 
7 2 3-15 8·438 1'75831 0·22330 -0,11487 6'7905 7,0363 

7 3 3-15 8'806 1·80146 0·20258 -0,48928 6·6908 6'9365 
7 4 3"':""15 7·615 1·84461 0,18462 -0,88384 6,5940 6·8399 
7 5 3-15 8·867 1·88776 0'17044 -1,30086 6·5001 6'7462 

8 0 3-15 8·626 1·32983 0·24487 0·63259 8·0000 8·2536 
8 3-15 8,390 1·35660 0,22136 0·29573 7'9096 8,1622 

8 2 3-15 8,563 1,38335 0·20053 -0,06072 7·8216 8·0734 
8 3 3-15 8·935 1,41011 0,18240 -0,43673 7,7359 7,9868 

8 4 3-16 9,152 1,43567 0·16685 -0,83133 7,6525 7,9027 

8 5 3-18 8·927 1·46362 0'15424 -1,24724 7,5712 7·8207 

9 0 3-15 8·793 1,07766 0·21908 0,71166 9·0000 9·2664 
9 3-15 7,796 1·09540 0,19892 0'36765 8·9192 9,1845 

9 2 3-15 7,851 1·11314 0,18110 0·00475 8,8402 9·1043 
9 3 3-15 8·935 1·13088 0,16597 -0,37945 8,7630 9·0260 
9 4 . 4-17 9,330 1·14862 0,15275 -0,77689 8·6875 8,9495 

9 5 4-19 8,197 1'16636 0·14151 -1'19393 8,6136 8,8746 

10 0 . 3-15 - 8·457 0,88850 0,19697 0,80049 10·0000 10·2823 
10 3-15 7,125 0,90090 0,17983 0,44629 9·9253 10'2064 
10 2 3-15 6'613 0'91330 0·16462 0'07480 9·8521 10·1319 
10 3 3-15 6·643 0'92570 0,15137 -0,31402 9'7803 10'0590 
10 4 4-18 7,500 0·93810 0:13910 -0'71654 9'7099 9'9874 
10 5 4-19 7·104 0,95050 0·13048 - 1,14049 9·6408 9'9172 

11 0 3-19 8'739 0·74384 0'17740 0'89885 11'0000 11·3000 
11 4-19 8·864 0'75288 0'16288 0'53458 10,9294 11'2281 
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From the inspection of Table II it is seen_that also here the moderate lateral interac­
tions cause only a small decrease in the apparent heterogeneity. Treating the mobile 
adsorption as if it were localized leads, however, to an apparent increase in hetero­
geneity (the parameter e"). 

The parameter In bo decreases with the increase in both e and K j as before, but 
it is substantially higher; the true value of the full monolayer is 14- 35 per cent higher 
than its estimate given by the correlation (2.16) and uncorrected for In boo This 
complies with the fact that the quadratic correlation fails for high coverages if de/dp 
is very low. 

The parameter Urn decreases strongly with the increase of weak lateral interactions, 
which again can be interpreted as an overall strengthening of the adsorption ac­
cording to the relationship (3.3). Contrary to the Fowler case, however, Urn increases 
slowly with e, but in general in a strongly nonlinear way. This is at variance with 
Eq. (3.6) in which Urn was interpreted in terms of the saturation pressure. 

"Scaled Particles" Isotherm 

Test calculations have been undertaken for the kernel (2.6). The parameters obtained 
for - U between 3 and 13 are listed in Table III. 

The behaviour of the parameters is analogous to that for the Hill-deBoer case. 
According to the relationship (2.6), the increase of the pressure with the coverage 
starts to be very steep already for lower coverage relative to the Hill-deBoer mosJ.el 
of mobile adsorption. Therefore the parameter U = - 3 corresponds only to about 
half a. coverage and the parameter In bo is large, giving a substantial correction 
for the true value of the monolayer coverage. The parameter Urn behaves as before 
but its increase with the heterogeneity parameter e is higher than in the Hill-deBoer 
model. 

TABLE III 

Quadratic correlation (2·16) for Eq. (1·3) with the kernel (2·6) 

c K j 
Range 104s 102b2 In bo urn 
of-u 

7 2 3-15 17'2?1 1·66284 0·60016 0·26466 
8 0 3-15 18·445 1·27498 0·59842 0·85847 
8 2 3-15 16·982 1·31044 0·55464 0·43562 
8 4 3-15 16·245 1·34679 0·51464 -0,02687 
8 6 3-15 16·191 1·38224 0·47826 -0'52207 
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CONCLUSIONS 

The performed calculations show that on a strongly energy heterogeneous surface 
the differences between localized and mobile adsorptions are effectively smeared 
out and that the lateral interactions between adsorbed species manifest themselves 
on adsorption isotherm only as an overall strengthening of adsorption. Not only 
the type of the distribution of adsorption energies remains unaffected, but also its 
heterogeneity parameters change only little for different models of the adsorption 
behaviour. Approximate irrelevancy of the adsorbing mode for the resulting ad­
sorption isotherm on heterogeneous surface has already been assumed by Cero­
folinill, who noted that at sufficiently low temperatures (which is equivalent to a well 
developed heterogeneity) the local isotherms can be approximated successfully 
by a step function. Although the arguments given in that paper were plausible, they 
were not properly justified. Our numerical results allow to specify the range of ap­
proximate validity of this behaviour and also to extend the general features to other 
shapes of distributions in adsorption energies. 

Furthermore, the results show that the Dubinin-Radushkevich isotherm (1.1) 
can be formally applied with a reasonable accuracy to pressure range of about 
five orders of magnitUde, even for nonporous materials provided the energy distrib.u­
tion function is of the type (1.11). In this case, however, the isotherms for different 
temperatures will be correlated with parameters c and Urn' defined by Eqs (2.10) 
and (2.11), respectively, the temperature dependence of which is different from that 
given by the Dubinin-Radushkevich model for porous materials. 
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