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A numerical method, based on the integral equation of the adsorption on energy heterogeneous
surfaces, is suggested for the evaluation of overall isotherms. It is shown that for the distribu-
tion of adsorption energies given by Eq. (1.11) and different models of the adsorption behaviour,
the overall isotherms obey approximately the Dubinin-Radushkevich equation. The strong
energy heterogeneity smears effectively the differences between the localized and mobile ad-
sorption and leads to the same character of the overall isotherm with only a slightly changed
heterogeneity parameter.

Among the empirical correlations used to express the experimental data for the
isothermic adsorption on a heterogeneous surface, the Dubinin—Radushkevich (DR)
isotherm

o(p, T) = afa,, = exp {— [%T In (pm/p)]z} T (1.1)

is very important. The observable quantity is here the adsorbed amount a at a partial
pressure p of the adsorbing species, and at a temperature T. Moreover, Eq, (1.1)
contains three adjustable parameters E, p,, and a, which can be estimated easily
from a quadratic regression of In a vs In p. In the original derivation!, based on the
Polanyi theory of the adsorption potential ¢, the expression (1.1) has been suggested
to correlate adsorption data for porous materials, provided that the integral distribu-
tion function for the volume W of micropores is given by

W|W, = ajay, = exp (—ke?) . (1.2)

In this theory, the pressure parameter p,, has been identified with the equilibrium
vapour pressure p, of the adsorbing species, requiring thus a subcritical temperature
during the adsorption. To the quantity a, = W a meaning was given of the volume
of all the micropores in the adsorbent (accessible for the gaseous species).
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1710 Smutek, Zukal :

It has been shown, that the correlation (1.1) is also applicable to some nonporous
surfaces and the supercritical temperatures. In such cases the parameter p, loses
its original physical meaning (for a review, see’). As a consequence of this extension
of the applicability, several authors tried to obtain a distribution f(g) of adsorp-
tion energies g on an energy heterogeneous (but nonporous) surface, consistent with
the overall adsorption isotherm given by Eq. (1.1). Generally, the starting point has
been the integral equation

O(p.T) = alp. T)eu(T) = [ 9(p. . 4) f0) 44 (1)

Here, q, is the lowest adsorption energy, f(q) is normalized to unity, and hence
the kernel 9(p, T, ) < 1 expresses the coverage of adsorption sites or regions with the
adsorption energy g, at the pressure p and the temperature 7. In the simplest case
the kernel is given by the Langmuir isotherm

= p
T e 4 — aoRT] =

This means a restriction of the problem to submonolayer coverages only, with
localized adsorption without any interaction between admolecules. Yet it is so far the
only case claimed to be solved exactly for f(q). The authors® used the Wiener-Hopf
method for the solution of integral equations and arrived at the expression

ex .
f(x) = p( )exp(—xz) sin (24x) (1.5)
with
A= ﬂ;j; x= U(LE——*— ARt 3y Pm/a(T) . (1.6)

The parameters E and p,, have the same meaning as in Eq. (1.1). The lower integra-
tion limit in Eq. (1.3) becomes x, = BRT/E, the upper one is infinity and dq = E dx.
Unfortunately, the claim of the correctness of solution (1.5) is unsubstantiated.
First, f(q), and also f(x), should be normalized to unity according to the initial
definitions. But (see*)

2 @ ®
ﬁlﬂ) J exp (—xz) sin (2AX) dx = i J. exp (XZ) dx =
0

a 0
2 k=1
(2A) =1

@k — )i (1.7)

= exp (AZ) Z
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Dubinin-Radushkevich Equation 1711

for A > 0. The substitution of zero by x, = BRT|E = AB/xn in the lower integra-
tion limit of (1.7) leads generally to values of the integral different from unity.

An even more serious objection may be raised against the distribution function
(1.5). The distribution function in this form is unacceptable since its term sin (24x)
leads to nonphysical negative values of the distribution function f (‘c) Thus, Eg. (1.5)
can provide at best an approximate solution to the integral equation (1.3), with the
kernel (1.4) and the left-hand side given by Eq. (I.1). Assuming next that B is non-
negative, i.e., that p,, = a(T), the physically meaningful part of f(x) runs from
X9 = AB|n = BRT|E to x,,, = n/24 = E[2RT. Thus, good. approximation to the
observed isotherm (I.1) can only be obtained for large values of E/RT (low values
of A), except for the estimate of a,, which is uncertain because of the above mentioned
lack of normalization of f(x).

In an earlier paper’, the integral equation (1.3) with the Langmuir kernel (1.4)
has been solved for the left-hand side given by

o(p, T) = CXp{_ [%Tm (1 + pm/p):lz} ;P < P (1.8)

This expression differs only slightly from the DR-equation (I.1) for p < p,. The
modification (1.8) has been necessary owing to the use of the Stieltjes’ method®
for the solution of the integral equation. The result is formally identical with the
solution (1.5), only x = (¢ — g,)/E, i.e., B = 0 in this case. Unfortunately, the last
step of calculations involved an error. The correct expression for x is

= %In {exp [(¢ — q0)/RT] — 1} . (1.9)

Consequently, we obtain x, = — oo at the lower integration limit, g,, of Eq. (1.3),
so that sin (24x) in (1.5) oscillates strongly between positive and negative values
near q = ¢, and the distribution function f(x) lacks any physical meaning.

In this way it is seen that attempts to assign experimental isotherms obeying the
DR-equation’ (1.1) to some continuous distribution function f(g) in adsorption
energies have met with limited success so far, even when using the simplest kernel
(1.4) of the Langmuir form.

An approximate solution of Eq. (1.3) is given by the so called condensation me-
thod”. Here the local isotherm is represented by a step function (0; 1), where the
jump from unoccupied to fully occupied sites occurs for a value g(p) which is a mono-
tonously decreasing function of the pressure. Then the approximate energy distribu-
tion function leading to Eq. (1.1) becomes

7@) = X299 exp (~ [(a ~ ao)/ET) (110
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1712 Smutek, Zukal 3

Formally, it is the same differential distribution function as that obtained from the
integral distribution function (1.2). Indeed, the Dubinin procedure, which assumes
subsequent filling of pores according to their size (with the corresponding adsorption
potential ¢), matches closely the condensation method for continuously heterogene-
ous surfaces. It is seen that the parameter E? in Eq. (1.10) has the meaning of the
variance s> of the distribution, i.e., it characterizes its energy width and its mean
adsorption energy § — qo = +/()2E.

In this paper, we have tried to tackle the problem from another side: by numerical
solution of the integral (1.3) for the normalized distribution function

fla) = ﬁ%‘f") exp {— [(a — 40)/5]*} ()

for different kernels 9(p, T, q), i.e., for different assumptions for the local adsorption
probabilities. The values of —In @ obtained in this way are further correlated with
a power function in In p. At last, we study in which range of coverages a truncation
at the quadratic term in In p will reproduce the input of —In @ data with sufficient
accuracy. With this truncation, the correlation is of the form (1.1) of the DR-iso-
therm.

METHOD

Numerical solution of the problem with the Langmuir isotherm for the kernel
in Eq. (1.3) has been already published®. However, the results were presented only
graphically and also the goal of that paper was different from the ours. We assumed
the following simple isotherms for the kernel in Eq. (1.3):

1) The Fowler isotherm

Ky = 1 y SeXp(_Ki9)~ (2'1)

2) The Hill-deBoer isotherm

3 3
7 R ex —K9). 2.2
iR (1 & ) )
Here
8=39(p, T, q), (2.3)
Ky=Ky(q, T) = K3 exp (q/RT), (2.4)
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Dubinin-Radushkevich Equation 1713

and
K; = K{/RT (2.5)

represents a rough approximation of lateral interactions between admolecules.

3) Further, a few calculations have been performed for the “scaled particles”
variant of the perfectly mobile adsorption®

=% L[ =2) o
PRy = —— p[wl_sy Kﬂ]. (26)

The above isotherms can be easily extended to a multilayer adsorption of the BET
type, i.e., starting with the second layer, the heat of adsorption is equal to the heat
of condensation. It is sufficient to write

' =9(1 —h); h=p/p, (2.7)

instead of 9 in the right-hand sides of Eqs (2.1), (2.2) and (2.6), and the left-hand
sides become

pKy/(1 — h). (2.8)

Here, p, is the saturation pressure of adsorbing vapours and it is meaningful only
for subcritical temperatures.

In order to simplify the calculations, the following substitutions have been intro-
duced:

t=[(a - q0)/s]*, (2.9)

¢ = s/RT, (2.10)
and
u = qo/RT + In (pK3y) . (2.11)

These substitutions transform Eq. (1.3) into

Hu, ¢, K;) = J‘ 8, u, ¢ K ) et dt (2.12)

0

and the kernels (2.1), (2.2) and (2.6), respectively, are defined by

99—&& (2.13)

By

c/(t)+u=In :
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t o — K. (2.14)

and

c /() +u=In i g, B +< 9 )Z—Kis. (2.15)

1-39 1-39 1-39

These forms are suitable for iterative search for the values of 9(t, u, c, Ki) corres-
ponding to the given sets of (¢, u, ¢, K;). The form of the integral (2.12) suggests
its numerical integration by means of the Gauss—Laguerre method'®. But even for the
highest available number of terms, n = 32, the results of numerical integration
agree only poorly with the exact values. This is caused by a steep increase of ()
in a narrow range of t-values. Therefore, a set of Gauss—Legendre integrations has
to precede the Gauss—Laguerre integration. For a given number of terms in the inte-
gration formula, the number of ranges and their widths have been changed in order
to obtain the accuracy of @ better than 10~° for the Fowler isotherm, and better
than 10™* for the Hill-deBoer isotherm. The accuracy has been checked either
directly by increasing the network of t; in the critical region of the steepest changes
in S(t), or indirectly by following improvement of the fit of the correlation of —In &
in powers of u with the increase in the highest power of u applied.

The values of @(u, ¢, K;) were evaluated for the following parameters:

1) Fowler isotherm: K; = 0; 0'5; 1-0; 1-5; ¢ = 3;(1); 10; 2) Hill-deBoer isotherm:
K; = 0;(1); 5; 1'5; 25; ¢ = 6 (1); 11; 3) Scaled particles: ¢ = 8; K; = 0; 2; 4; 6, and
¢ = 7; K; = 2. Separation of the adsorbate into two adsorbed phases in these models
begins for K; > 4; 6-25, and 11-6823, respectively. Therefore, the parameters K; used
above correspond to moderate lateral interactions when only one adsorbed phase
is defined. :

Values of @ > 0-9 were obtained in the case of Fowler isotherms, the range de-
creasing below 0-8 for the Hill-deBoer isotherms for low K; and c-values; still lower
coverages were reached for the “scaled particles” model. The step in u (corresponding
to the same step in In p) for the individual isotherms was usually Au = 1, dnly for the
most compact isotherms (low ¢, high K;) it was decreased to Au = 1/2.

The correlations of —In @ in powers of u have been examined up to u®. Of primary
interest, however, were the quadratic correlations

—In O = ay + au + a,u® = Inby + by(uy, — u)?, (2.16)
where
by =g — {20, DaiE 0y, AR = =028 . (2.17)
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According to the definition (2.11) one obtains
Uy — u = In (p,Kp) — In (pK3) = In (pu/p) - (2.18)

Comparison with the DR equation (1.1) shows the formal equivalence of the two
expressions. As far as the correlation (2.16) is satisfactory, the adsorption data fit
formally the correlation (I1.I), but with @ = Ob,, i.e., the parameter a,, in the
DR-isotherm (giving © = 1 for p = p,) goes over to aj = an/b,, giving @ =
= 1{b, for p = py. :

The fit has been considered satisfactory if the overall standard deviation in In @
did not exceed 2. 1073, which is a value lower than the experimental error in most
cases.

RESULTS AND DISCUSSION

The most important result achieved is the satisfactory fit of adsorption data by means
of the quadratic equation (2.16) over a wide range of pressure for most of the cases
treated. This implies directly that the surface heterogeneity of the type (1.10) smears
out (at least for higher values of the heterogeneity parameter c) any effect of lateral
interactions (provided they are not too strong) and even of the mobility character
of admolecules. Clearly, this implication can be extended to other types of strong
surface heterogeneity.

In all the cases studied, the pressure range for a satisfactory fit of —In @ vs powers
of u, as well as its standard deviation, remain almost unaffected by lateral interactions,
provided the latter are moderate. An increase in the surface heterogeneity, i.e.,
the increase in ¢, improves the quadratic fit (as well as any higher polynomial fit).

In the quadratic correlation (2.16), the parameter b, reflects the adsorption hetero-
geneity of the surface, whereas the parameter In b, represents a correction of the
true value of a,, and u,, can be interpreted as a measure of the adsorption energy,
according to the definition (2.11) of u. Comparison of expressions (1.10) and (1.11)
with the definition (2.10) suggests the equality b, = 1/c? should hold, provided the
condensation approximation is valid. This is, however, not the case, as will be shown
below.

The quadratic fit (2.16) becomes poor for too high and too low coverages @. With
high coverages, i.e., for high pressure, a rather sudden deterioration is met. This
occurs in the region of little interest, where, most probably a multilayer adsorption
is developed to a considerable extent. For coverages @ < 0-07, the misfit increases
more gradually and leaves @ well within experimental error. Thus the quadratic
fit appears to express very satisfactorily the experimental data over the whole signi-
ficant range of adsorption.
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In the following, details for the individual types of adsorption isotherms §(p, T, q)
are discussed.

The Fowler Isotherm

The kernel (2.1) corresponding to the Fowler isotherm gives the best fit of the inte-
gral (1.3) with the overall isotherm (1.I) for the heterogeneity parameter ¢ = 6.
A satisfactory correlation of b,(c, K;) is then

b, = 1/c* — (641 — 1-56K;)/c* (3.1)
instead of expected form b, = 1/c?.

Using this correlation, the parameters In b, and u,, of the fit (2.16) have been
reevaluated. The fit thus obtained was not appreciably inferior to the original regres-
sions in which all three parameters were optimized. The range of u values has been
limited by the condition that the standard deviation of the fit must not increase
significantly by the incorporation of a new u value and that it must be lower than
2.107? in any case. The attempts to construct simple correlation for u,(c, K;)
and In bo(c, K;) have failed. The coefficients are given in the Table I, together with
the corresponding ranges of u values, the standard deviations of the fit, and the values
of ¢’, defined by the relationship

by(e, K;) = by(c, 0). (3.2)

The value of ¢' characterizes the apparent heterogeneity, if the adsorption with
lateral interactions, defined by K, is dealt with as if no interactions occurred.

The data of Table I show that moderate lateral interactions, when neglected,
distort only insignificantly the type (’1 A1 ) of the heterogeneity distribution. Moreover,
this neglect of interactions causes only small decrease in the apparent heterogeneity,
the latter becoming more marked as the heterogeneity parameter c is decreased. The
increase in K; is accompanied by a decrease in u,, = ¢o/RT + In ( mef,). This can be
interpreted as an apparently stronger overall adsorption, since for a given value
of ¢ it holds 3

Un(K;) — u = uy(0) — [un(0) — uy(K;) + u] =
=u,(0) — u’, (3.3)
where
U = uy(0) — uy(K;) + u = u,(0) — uy(K;) + qo/RT+ In K + Inp. (3.4)

Since the difference [u,(0) — u,(K;)] is positive, it gives rise to an apparent increase
in the sum (¢q,/RT + In Kg,), which means a stronger adsorption.
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Further, it can be shown that the parameter p,, in Eq. (2.1 8) has not a meaning
of the saturation pressure p,. Indeed, to the first approximation one obtains

Inp, ~ A— q/RT,

where g, is the heat of condensation. This would give

(3.5)

Up =ty = go/RT + NKZ + A — ¢ /[RT = A" + (9o — qu) ¢/s = A' + B'c. (3.6)

Thus, u,, should increase roughly linearly with ¢, as for as the lowest heat of ad-
sorption ¢, is higher than the heat of condensation g, of the adsorbing vapour. An in-
spection of the u,, data in the Table I reveals, however, that for a given K; value

TaABLE [

Quadratic correlation (2:16) for Eq. (I-3) with the kernel (2-7) and b, given by Eq. (3-1)

gy o Tengs 10%s
of -u

6 0-0 0 ) 14-200
6 05 1—12 14638
6 1-0 2=l 11-841
6 15 2=l 6-280
7 0-0 2—18 5080
7 05 2—13 5313
7 10 2—13 5036
7 1-5 ) 4-089
8 00 3—14 2-394
8 05 3—14 2-943
8 1-0 3—14 2:895
8 15 3—14 2-148
9 00 3—15 1:302
9 05 3—117 1-889
9 1-0 3—17 2:542
9 1-5 3—16 1-716
10 0-0 3—16 1-122
10 05 3—17 1-218
10 1-0 3—18 1:532
10 1-5 3—18 1-114

102b2 In by Uy ¢
2-28318 0-05425 0-21224 6-0000
2:34336 0-04644 —0-06389 5-9006
2-40355 0:04117 —0-34773 5-8042
2:46274 0-03514 —0-62958 5-7106
1-77384 0-04822 0-12215 7-0000
1-80633 0-04064 —0-13573 6-9255
1-83882 0-03427 —0-40001 6-8527
1-87130 0-02880 —0:66899 6:7816
1-40601 0-04099 0-:07499 8-:0000
1-42503 0-03419 —0-17429 7-9396
1-44409 0-02859 —0-43720 7-8803
1-46314 0-02416 —0-69130 7-8222
1-13687 0-03446 0-04874 9-0000
114876 ¢ 0-02875 —0:19775 8:9489
1-16063 0-02421 —0-45161 88986
1-17253 0-02010 —0-70823 8-8489
0-93590 0-02906 0-03212 10-0000
0-94370 0-02416 —0-21169 9:9555
0-95150 0-02007 —0-46224 9:9116
0-95930 0-01672 —0-71777 9-8682
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u,, decreases as c is increased and this variation is strongly nonlinear. Thus, for K; = 0
(Langmuir isotherm), the simplest fair approximation,

R T o Lol R .t (3.7)
c—19 " (c— 197
involves four parameters for five degrees of freedom.

Finally, if a,, is identified with the full monolayer coverage, the quadratic correla-
tion (2.16) gives its estimate a few per cent too low. The error rises up to 5-5 per
cent at ¢ = 6 and K; = 0 and decreases with the increase in both ¢ and K;. For
lower heterogeneity (or for higher temperatures) with ¢ < 6, a quadratic fit of
—In @ vsu (or In p) with a sufficiently small standard deviation can be achieved
over a restricted range of @ values only, although inclusion of higher terms in u'
(or In 'p) extends this range markedly. The coefficients of these higher-order poly-
nomials behave reasonably and change regularly with the increase in K; and with the
order of the polynomials used. It is only the case of ¢ = 3 and K; = 15 in which the
presence of lateral interactions may be inferred from experimental data. This is
evidenced by the impossibility to express the @ data as a series of the Langmuir
isotherms

&x) s
ip+ag

with only positive coefficients a; and b;.

The Hill-deBoer Isotherm

For the kernel (2.2), the quadratic fit has been satisfactory over the significant range
of u (orln p) values for the heterogeneity parameters ¢ = 6, as for the Fowler
isotherm. The dependence of the parameter b, in Eq. (2.16) on ¢, however, deviates
from the expected one somewhat more than in the Fowler case, and satisfies the cor-

relation
(g5 p= (0-955 + 0~004Ki)/cZ - (6-65—9-84Ki)/c4. (3.8)

With b, fixed by Eq. (3.8), the best parameters In b, and u,, in the correlation (2.16)
have been reevaluated. These are summarized in Table II. Therein, again, the ap-
parent heterogeneity parameters ¢’, defined by Eq. (3.2), are listed, together with the
parameters ¢” for the substitution of the kernel (2.2) by the Langmuir isotherm,

i.e., from the equality

(0:955 + 0-004K,)/c* — (6:65 — 084K )/c* = 1/(¢")2 — 6:41/(c")* . (3.9)
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TaBLE IT

Quadratic correlation (2:16) for Eq. (/-3) with the kernel (2-2) and b, given by Eq. (3-8)

¢ kb Rames a4
of -u
6 0 2—14 15-494
6 1 2—-14 13-417
6 2 2—14 13-997
6 3 2—14 15-585
6 4 3—13 6-399
6 5 3—13 6-186
7 0 3—15 8-729
7 1 3—15 7-867
) 2 3—15 8:438
7/ R 3—15 8-806
7 4 3—15 7-615
i - 3—15 8-867
8 0 3—15 8:626
8 1 3—15 8:390
8 2 3—15 8:563
8 3 3—15 8-935
8 4 3—16 9-152
8 5 3—18 8-927
9 0 3—15 8:793
9 1 3—15 7-796
9 2 3—15 7-851
9 3] 3—15 8:935
9 by 4—17 9-330
9 3 4—19 8-197
10 0 - 3—15 8:457
10 1 3—15 7:125
10 2 3—15 6-613
10 3 3—15 6-643
10 4 4—18 7-500
10 5 4—19 7-104
11 0 3—19 8-739
11 1 4—19 8-864

10%p,

2:13966
2:21559
2:29151
2:36744
2:44336
2-51929

1-67301
171516
1-75831
1-80146
1-84461
1-88776

1-32983
1:35660
1-38335
1-41011
1-43567
1-46362

1-07766
1-09540
1-11314
1-13088
1-14862
1-16636

0-88850
0-90090
0-91330
0-92570
0-93810
0:95050

0-74384
0-75288

In b,

0-30248
0-27504
0-24871
0-22480
0-20580
0-18972

0-27387
0-24742
0-22330
0-20258
0-18462
0-17044

0-24487
0-22136
0-20053
0-18240
0-16685
0-15424

0-21908
0-19892
0-18110
0:16597
015275
0-14151

0-19697
0-17983
0-16462
0-15137
0:13910
0-13048

0-17740
0-16288

0-57679 6-0000
0-22144 5-8627
—0-14358 5:7305
—0-52318 5-6027
—0-92520 5:4790
—1-34618 5-3587

0:57712 7-0000
0:23940 6-8936
—0-11487 6-7905
—0-48928 6-:6908
—0-88384 - 6-5940
—1-30086 6:5001

063259 8-0000
0-29573 7-9096
—0-06072 7-8216
—0-43673 Va5
—0-83133 7-6525
—1:24724 75712

0-71166 9-0000
0-36765 8:9192
0-00475 8-8402
—0-37943 8:7630
—0-77689 8:6875
—1-19393 8:6136

0-80049 10-0000
0-44629 9-9253
0-07480 9-8521
—0-31402 9-7803
—0:71654 9:7099
—1:14049 9-6408

0-89883 11-0000
0-53458 10-9294
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6:2605
61155
5-9861
5:8617
5:7420
5:6264

7-2461
7-139%4
7-0363
6:9365
6-8399
6:7462

8-:2536
8-1622
8:0734
7-9868
7-9027
7-8207

9:2664
9-1845
9-1043
9:0260
8:9495
8-:8746

10-2823
10-2064
10-1319
10-:0590
9-9874
901572

11-3000
11-2281
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From the inspection of Table II it is seen that also here the moderate lateral interac-
tions cause only a small decrease in the apparent heterogeneity. Treating the mobile
adsorption as if it were Jocalized leads, however, to an apparent increase in hetero-
geneity (the parameter c”).

The parameter In b, decreases with the increase in both ¢ and K, as before, but
it is substantially higher; the true value of the full monolayer is 14— 35 per cent higher
than its estimate given by the correlation (2.16) and uncorrected for In by. This
complies with the fact that the quadratic correlation fails for high coverages if d@/dp
is very low.

The parameter u,, decreases strongly with the increase of weak lateral interactions,
which again can be interpreted as an overall strengthening of the adsorption ac-
cording to the relationship (3.3). Contrary to the Fowler case, however, u,, increases
slowly with ¢, but in general in a strongly nonlinear way. This is at variance with
Eq. (3.6) in which u,, was interpreted in terms of the saturation pressure.

“Scaled Particles” Isotherm

Test calculations have been undertaken for the kernel (2.6). The parameters obtained
for —u between 3 and 13 are listed in Table III.

The behaviour of the parameters is analogous to that for the Hill-deBoer case.
According to the relationship (2.6), the increase of the pressure with the coverage
starts to be very steep already for lower coverage relative to the Hill-deBoer model
of mobile adsorption. Therefore the parameter u = —3 corresponds only to about
half a coverage and the parameter In b, is large, giving a substantial correction
for the true value of the monolayer coverage. The parameter u,, behaves as before
but its increase with the heterogeneity parameter c is higher than in the Hill-deBoer
model.

TaBLE IIT
Quadratic correlation (2:16) for Eq. (/-3) with the kernel (2:6) .
Range 4 3
c K; 10%s 10°b, In b, Uy
of -u
4 2 3—15 17-261 1-66284 0-60016 0-26466
8 0 3—-15 18-445 1-27498 0-59842 0-85847
8 2 3—15 16-982 1-31044 0-55464 0-43562
8 4 3—15 16243 1-34679 0-51464 —0-02687
8 6 3—15 16-191 1-38224 0-47826 —0:52207
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CONCLUSIONS

The performed calculations show that on a strongly energy heterogeneous surface
the differences between localized and mobile adsorptions are effectively smeared
out and that the lateral interactions between adsorbed species manifest themselves
on adsorption isotherm only as an overall strengthening of adsorption. Not only
the type of the distribution of adsorption energies remains unaffected, but also its
heterogeneity parameters change only little for different models of the adsorption
behaviour. Approximate irrelevancy of the adsorbing mode for the resulting ad-
sorption isotherm on heterogeneous surface has already been assumed by Cero-
folini'!, who noted that at sufficiently low temperatures (which is equivalent to a well
developed heterogeneity) the local isotherms can be approximated successfully
by a step function. Although the arguments given in that paper were plausible, they
were not properly justified. Our numerical results allow to specify the range of ap-
proximate validity of this behaviour and also to extend the general features to other
shapes of distributions in adsorption energies.

Furthermore, the results show that the Dubinin—Radushkevich isotherm (1.1)
can be formally applied with a reasonable accuracy to pressure range of about
five orders of magnitude, even for nonporous materials provided the encrgy distribu-
tion function is of the type (1.11). In this case, however, the isotherms for different
temperatures will be correlated with parameters ¢ and u,, defined by Eqs (2.10)
and (2.11), respectively, the temperature dependence of which is different from that
given by the Dubinin—-Radushkevich model for porous materials.
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